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called the steady-state condition. This paper 
evaluates the performance of the chart under 
the steady-state condition. It is shown that 
the steady-state out-of-control average run 
length (ARL1) is substantially larger than 
the zero-state ARL1, hence larger number 
of samples are needed to detect the out-
of-control condition. From the comparison 
with other CV charts, the steady-state 
synthetic CV chart does not show better 
performance, especially for small sample 
sizes and shift sizes. Hence, the synthetic 
CV chart is not recommended to be adopted 
under the steady-state condition, and its 

ABSTRACT

The synthetic coefficient of variation (CV) chart is attractive to practitioners as it 
allows for a second point to fall outside the control limits before deciding whether the 
process is out-of-control. The existing synthetic CV chart is designed with a head-start 
feature, which shows an advantage under the zero-state assumption where shifts happen 
immediately after process monitoring has started. However, this assumption may not be 
valid as shifts may happen quite some time after process monitoring has started. This is 
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good performance is only applicable under the zero-state assumption. The results of this 
paper enable practitioners to be aware that the performance of the synthetic CV chart may 
be inferior under actual application (when shifts do not happen at the beginning of process 
monitoring) compared to its zero-state performance.  

Keywords: Coefficient of variation; control chart, exponentially weighted moving average, run rules, Shewhart, 

steady-state, synthetic chart, zero-state

INTRODUCTION

Control charts are useful tools to monitor a process for the presence of assignable cause(s), 
which results in an out-of-control condition. A lot of studies to improve the performance 
of control charts and to apply them in various scenarios are available in the literature, 
some of the recent ones are Khan et al. (2017), Marchant et al. (2018), You (2018), Mim 
et al. (2019) and Kinat et al. (2020). Similar with most conventional control charts, the 
charts are designed to monitor shifts in the process mean (μ) and/or standard deviation 
(σ), usually through X  and/or R S charts. However, control charting techniques are 
extended to various scientific areas, where μ and σ are always not constant and the process 
is nevertheless considered as in-control. This setting is usual in the context of engineering, 
healthcare, agriculture, education, and a variety of applications where the process output 
changes from time to time. For example, to maintain quality control checks on laboratory 
measurement on the amount of chemical in a patient’s blood, the mean amount varies from 
patient to patient, making it unsuitable to monitor μ.

Conventional μ and/or σ charts cannot be applied to monitor the stability and variability 
for such processes, since a change in μ and/or σ does not show an out-of-control (OOC) 
process. For processes with an inconsistent μ and/or σ, it is a better alternative to monitor 
the CV= σγ

µ
 

= 
 

 if the ratio of σ to μ is consistent, even though μ and/or σ varies. Yeong 
et al. (2017) have reviewed several fields where the CV is important. For example, σ 
is often found to be proportional with μ for certain quality characteristics related to the 
physical properties of metal alloys or composite materials, for example tool cutting life 
and several properties of sintered materials (Castagliola et al., 2011). In investments, the 
CV can measure the volatility compared to the expected return (Curto & Pinto, 2009). For 
example, Pang et al. (2008) measured the stability of dividend yields of the Hang Seng 
index through γ.

Kang et al. (2007) was the pioneer who first proposed a Shewhart type chart to monitor 
the CV. Subsequently, several new CV charts are proposed to improve the performance 
of CV-type charts, for example the Exponentially Weighted Moving Average (EWMA) 
CV chart by Castagliola et al. (2011) and the synthetic CV chart by Calzada and Scariano 
(2013). Recently, Zhang et al. (2018) proposed an improved EWMA CV chart by truncating 
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negative normalized observations to zero and Mahmood and Abbasi (2021) improved the 
performance of the Shewhart CV chart under neoteric ranked set sampling.  

The synthetic CV chart by Calzada and Scariano (2013) modifies the synthetic chart by 
Wu and Spedding (2000), who proposed the synthetic chart to monitor the process mean, 
so that it can monitor the CV. Subsequently, Yeong et al. (2018) proposed the economic 
and economic-statistical designs of the synthetic CV chart. The synthetic CV chart shows 
smaller ARL1 than the Shewhart CV chart in detecting all shifts but shows larger ARL1 
than the EWMA CV chart. The ARL is a commonly used measure of performance for 
control charts (Montgomery, 2019). There are two types of ARL, i.e., the IC ARL (ARL0) 
and OOC ARL (ARL1). The ARL0 measures the average number of samples taken until a 
false alarm occurs, while the ARL1 measures the average number of samples taken until 
an OOC condition is detected. A large ARL0 and a small ARL1 is preferred. By fixing the 
ARL0 as a specific value, a chart shows better performance if it has a small ARL1. This is 
because a chart with a smaller ARL1 can detect shifts faster. 

For a synthetic CV chart, when a sample CV ( )γ̂  falls outside the upper and lower 
control limits (UCL and LCL, respectively), an OOC signal is not immediately produced. 
Instead, these samples are only known as non-conforming samples, while conforming 
samples are samples within the limits. The chart will signal depending on the conforming 
run length (CRL), which counts the number of conforming samples between successive 
non-conforming samples. When CRL L≤ , the process is OOC, conversely it is in-control 
(IC). Note that L is a threshold set by the practitioner, which determines how close two 
successive non-conforming samples must be to each other (measured in terms of the 
number of conforming samples between two successive non-conforming samples), so that 
an OOC signal will be produced. Since the synthetic CV chart gives an OOC signal when 
CRL L≤ , a smaller value of L indicates that the non-conforming samples must be quite 
close to each other to produce an OOC signal, while for larger values of L, an OOC signal 
will still be produced even though the non-conforming samples are quite far from each 
other. A larger L is usually selected when practitioners are interested to detect a small shift 
in the process, conversely a smaller L is selected for large shifts. In practice, the value of 
L is determined to minimize the ARL1, subject to constraints in the ARL0. 

Recently, Rakitzis et al. (2019) gave an overview of recent studies on synthetic-type 
charts. A thorough review is provided for different types of synthetic chart monitoring the 
mean, variance and the joint monitoring of the mean and variance. Rakitzis et al. (2019) 
has stated that the synthetic chart is designed with a head-start feature which leads to 
misleading conclusion on the actual performance of the synthetic chart. Similarly, the 
synthetic CV chart by Calzada and Scariano (2013) is also designed based on an enormous 
head-start. This head-start feature assumes that a non-conforming sample is present at the 
starting time (t = 0). As a result, the first CRL will simply be the number of samples until 
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the first non-conforming sample is observed. If the first CRL is less than or equals to L, 
then this head-start feature will provide an advantage to the synthetic CV chart, since fewer 
samples are required to give an OOC signal as the chart does not have to wait until the 
second sample to fall outside the control limits before deciding whether the process is IC 
or OOC. If the process starts in an OOC condition (commonly referred to as the zero-state 
condition), it is likely that the first non-conforming sample will be encountered not long 
after process monitoring has started, hence it is likely that the first CRL will be less than 
or equal to L. Under such conditions, the head-start feature will result in an improvement 
in the performance of the synthetic CV chart.

However, when the process shifts only happen after the process has been operating 
for quite some time (commonly referred to as the steady-state condition), it is unlikely for 
a non-conforming sample to be encountered not long after the starting time. As a result, it 
is likely that the first CRL will be more than L, and the head-start feature will not result in 
an advantage anymore. In this paper, the performance of the synthetic CV chart when the 
head-start advantage has faded away will be studied. This is important so that practitioners 
can evaluate the performance of the synthetic CV chart without the head-start advantage, 
which is likely to occur in a steady-state condition.

Davis and Woodall (2002) were the pioneer who propose the steady-state synthetic 
X  chart. Recently, Knoth (2016) conducted a thorough study on the synthetic X  chart 

by considering two steady-state assumptions, i.e., conditional, and cyclical steady-states. 
Conditional steady-state assumes that there are no false alarms before the shift, while the 
cyclical steady-state assumes that a series of false alarms may happen before the shift. 
Formulae for the conditional and cyclical ARLs are derived. There is a significant difference 
between the zero-state and steady-state performance of the synthetic X  chart. For small 
and moderate shifts, the zero-state synthetic X  chart performs better than the run rules 
chart, while for large shifts, it performs better than the EWMA chart. However, the synthetic 
X  chart shows the worst steady-state performance compared to the steady-state EWMA 

and run rules charts (Knoth, 2016). 
Teoh et al. (2016) compared the cyclical steady-state performance of the synthetic 

and EWMA CV charts. However, the methodology to evaluate the cyclical steady-state 
performance is not given. Furthermore, the conditional steady-state performance is not 
studied in Teoh et al. (2016). This paper provides the formulae for the conditional and 
cyclical steady-states, so that practitioners can easily evaluate the steady-state performance 
of the synthetic CV chart. The methodology to obtain the optimal chart parameters based 
on the steady-state performance is also provided. Furthermore, this paper also evaluates 
the impact of different assumptions on initial states towards the ARL, which is not studied 
in Teoh et al. (2016). The initial state refers to the state prior to the shift in the process. 
This paper considers two designs. Both designs evaluate the steady-state performance. In 
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the first design, chart parameters that optimizes the zero-state ARL are adopted, while the 
second design optimizes the steady-state ARL. These two designs are, then, compared to 
evaluate whether the second design results in a significant improvement compared to the 
first design. 

MATERIALS AND METHODS

This section starts with a review of the operations of the synthetic CV chart. Subsequently, 
the zero and steady-state ARL of the synthetic CV chart is discussed. 

The synthetic CV chart classifies a sample as non-conforming if the sample CV is 
either above the upper control limit (UCL) or below the lower control limit (LCL), i.e., 
ˆ LCLγ <  or ˆ LCLγ < . By letting “0” denote a conforming sample and “1” denote a non-

conforming sample, a series of samples can be illustrated as a sequence of zeros and ones. 
For example, 10010 shows a series of five samples, where the non-conforming samples are 
the first and fourth samples. The digits to the right show whether the most recent sample 
is conforming/non-conforming, while digits to the left shows whether the earlier samples 
are conforming or non-conforming. 

When two successive “1”s are encountered, the number of samples between the 
successive “1”s are defined as the CRL, where the CRL includes the ending non-conforming 
sample. For example, the CRL is 4 for string 10001. When CRL L≤ , the process is OOC, 
conversely it is IC. For example, the string 10001 is IC if L is set as 3, while it is OOC if 
L is set as 4, or any value more than 4.

When two successive non-conforming samples are encountered, the synthetic chart 
determines whether the process is IC or OOC by counting the number of conforming 
samples between successive non-conforming samples. However, when the first non-
conforming sample is encountered, the CRL will simply be the number of samples until 
this non-conforming sample is encountered. This is called the head-start feature. For 
example, CRLs for the initial strings 1, 01, 001 and 0001 are 1, 2, 3 and 4, respectively. 
If L is set as 3, the first three strings will result in an OOC signal, while the fourth string 
results in an IC signal.

The head-start feature will result in a faster detection under a zero-state assumption. 
However, under the steady-state condition (where the process becomes OOC after the 
process has been operating for some time), the head-start advantage would have faded 
away. Hence, it is important for practitioners to evaluate the steady-state performance of 
the synthetic CV chart without the head-start advantage. 

Zero-state ARL 

Castagliola et al. (2011) has shown that the cumulative distribution function (cdf) of γ̂  
in Equation 1. 
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       ( )ˆ , 1 1,t
n nF x n F n

xγ γ
γ

 
= − −  

 
                            			          [1]

Where . 1,t
nF n
γ

 
−  

 
is the non-central t-distribution with (n–1) degrees of freedom and

non-centrality parameter n
γ

, with n being the sample size and γ the CV.

Inverting the cdf in Equation 1 gives Equation 2,

                                   		         [2]

with 1 . 1,t
nF n
γ

−
 

−  
 

 being the inverse cdf of the non-central t distribution. From

Equation 1 and 2, if ( )
ˆ

1 ,F n x
γ

α γ− = ,  then ( )ˆ ,F x nγ γ α= .  In other words, 
( )

ˆ

1 ,F n
γ

α γ−  evaluates the value of x such that ( )ˆP xγ α≤ = . In control chart 
design, α  is usually related to the false alarm probability, so that the control 
limits can be determined to obtain a false alarm probability set by the practitioner.

The LCL and UCL can be obtained as Equation 3,

1

0

LCL
1 1,

2t

n
p nF n

γ
−

=
 
− − 

 

                                             			          [3]

and Equation 4.

1

0

UCL
1,

2t

n
p nF n

γ
−

=
 

− 
 

                                                 			          [4]

Where 0γ  is the IC CV and p is the probability the sample CV falls outside the LCL and 
UCL when the process is IC. Note that p is usually determined to fix the IC run length. 

Let A and B be the probabilities a sample is conforming and non-conforming, 
respectively. A is obtained as Equation 5,

( )ˆLCL UCLA P γ= < <

                                                          	         [5]

with ( )ˆ .Fγ  defined in Equation 1 and 1B A= − . By merging Equation 1 and 5, A can be 
computed as Equation 6.

1, 1, .
LCL UCLt t

n n n nA F n F n
γ γ

   
= − − −      

                                        		         [6]
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To construct the Markov chain, we define the states 0, 1, …, L-1 as the number of “0”s 
after the most recent 1, and state L as the state with at least L “0”s after the most recent 
1. For example, for L = 3, the states 0, 1, 2 and 3 represent the initial strings 001, 010, 
100 and 000, respectively. The transition probability matrix is constructed as Equation 7,

0 0 0 0 ... 0 0
1 0 0 0 ... 0 0
2 0 0 0 ... 0 0
: : : : : : : : :

2 0 0 0 0 ... 0
1 0 0 0 0 ... 0

0 0 0 ... 0 0
OOC 0 0 0 0 ... 0 0 1

A B
A B

A B

L A B
L A B

L B A

 
 
 
 
 
 =  −
 

−  
 
  
 

P                                         	       [7]

where OOC is the absorbing OOC state. Note that the states of the Markov chain in Equation 
7 are defined differently from most synthetic papers. By referring to the state definitions 
in Davis and Woodall (2002), states 0, 1, …, L-1 in this paper is equivalent to states 1, 2, 
…, L in Davis and Woodall (2002), while state L in this paper is equivalent to state 0 in 
Davis and Woodall (2002). P  in Equation 7 can be converted to the same form as that in 
Davis and Woodall (2002) by shifting the row and column for state L to the first row and 
column, respectively. 

The rationale behind adopting slightly different state definitions is to facilitate a more 
intuitive analysis of the performance for the synthetic CV chart under different initial states. 
By referring to the state definitions in the preceding paragraph, as the states become larger, 
the non-conforming sample moves towards the left (except for State L where all the samples 
are conforming). This shows that the smaller states have a more recent occurrence of the 
non-conforming sample. By studying the performance of the chart as the states increases, 
practitioners will be able to easily observe the impact of the non-conforming sample’s 
position on the performance of the chart. 

By removing the last row and column of P , a transient ( ) ( )1 1L L+ × +  sub-matrix Q  
is obtained. The ARL is computed as Equation 8.

( ) 1TARL −= −q I Q 1                                                  				          [8]

Where q  is the ( )1 1L + × vector of initial probabilities for the transient states, I  is an 
( ) ( )1 1L L+ × +  identity matrix and 1  is an ( )1 1L + ×  vector of ones. Under the zero-state 
assumption, ( )1,0, ,0 T=q 

. In addition, zero-state ARLs for all possible starting states 
can also be obtained by solving ( )− =I Q 1l , where l ( )0 1, , T

Ll l l=   are the ARLs for 
the different starting states. By letting ( )1 Lr B A= − , Knoth (2016) has defined Equation 9.

( ) ( )( )11

          0             1           ...            1               

1 11 11 1 1... ,
LLL

T

L L

A AA A
r r r r B

− −−

−

 + −+ − = +
 
 

l

                            		        [9]
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Where the ARL0 is computed by letting 0γ γ= in Equation 6 to obtain the A and B in 
Equation 9, while the ARL1 is computed by letting 0γ τγ= , with τ  being the shift size 
the practitioner is interested to detect. Note that although notionally different and with 
different state definitions as mentioned in the preceding paragraph, Tl  in Equation 9 is 
the same as the ARL vector in Shongwe and Graham (2017; 2019). However, note that 
Shongwe and Graham (2017; 2019) conducted a study for the synthetic X chart, while 
this paper studies the synthetic CV chart.

Steady-state ARL 

The distribution for different initial states before the change point ( )θ  is studied in this 
section. The distribution is based on conditional and cyclical assumptions, and it will be 
utilized in formulating the steady-state ARLs.

To obtain the conditional stationary density, let ( )0 1 1
T

L Lπ π π π−=ψ  be 
the quasi-stationary density conditioned on no false alarm before θ, where iπ  is the state 
i stationary probabilities, i = 0, 1, …, L. From Markov chain theory, Tψ can be obtained 
by solving the equations T ϕ=Q ψ ψ and 1T =ψ 1 , where Tψ is obtained as Equation 10.

1

           0  1   ...     1      

...  ,
L

T

L L

A As s s s
B
ϕ

ϕ ϕ

−

−

  
=      

ψ
                                       		      [10]

Where 1 As
ϕ

= − . ϕ  is obtained by solving 1T =ψ 1  numerically with the starting value 
0 1.ϕ =  

To obtain the cyclical stationary density, it needs to be considered that the process 
restarts at the zero-state level after a false alarm. Hence, the matrix Q  is modified by adding 
the contents of the last column of Q  into the first column of Q . We refer to this modified 
matrix as *Q . By adopting a similar approach as that for the conditional probability 
distribution ψ , the cyclical stationary density is obtained as Equation 11,

( )1
*

          0    1  ...   1  

... ,L L

L L

B AB A B A−

−

=ψ
                                           		       [11]

which is the cyclical stationary distribution for the synthetic chart. The cyclical stationary 
distribution for the synthetic chart was first discussed and formulated by Machado and 
Costa (2014). Note that Machado and Costa (2014) investigated the performance for the 
synthetic X  chart, while this paper studies the performance of the synthetic CV chart.

From the conditional and cyclical distributions in Equation 10 and 11, the conditional 
and cyclical steady-state ARLs, denoted as ARLcond and ARLcyc respectively, is obtained 
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as Equation 12, 

0 0

0 00 0 0 0

0 00 0

0 0

1 1
,

1 1

L L

L

A A
As sAA AB B B r
A

δ
δ

δ δ

δ

ϕ ϕϕ ϕ

ϕ ϕ

      
   − −   
      = + + +   

− −   
   
   

                          
								                                      [12]

and Equation 13.

cyc *,0ARL T
δ= ø l                             

0
0

0

1
L LA AA B

A A
r

δ
δ

δ

δ

−
+

−
=

                                                
                                                                                  [13]

Where the subscripts 0 and δ denote the IC and OOC versions. The longer term in Equation 
13 is like that of Wu et al. (2010). Note that Wu et al. (2010) studied the performance for 
the synthetic X  chart, while this paper studies the performance of the synthetic CV chart.

RESULTS AND DISCUSSION

This section starts with a study on the performance of the synthetic CV chart under different 
initial states, and the probability for different initial states under the conditional and cyclical 
steady-state assumptions. The initial states refer to the state before the process shift. Next, 
the steady-state performance of the synthetic CV chart is studied based on two designs. 
Finally, the zero and steady-state performance of the synthetic CV chart is compared with 
the EWMA, run rules and Shewhart CV charts.

Synthetic CV Chart Under Different Initial States

In this section, the impact of different initial states on the performance of the synthetic 
CV chart is studied. Unlike the zero-state ARL which assumes that the initial state is zero, 
the actual initial state can belong to any of the states 0, 1, …, L. This section investigates 
the effects on the ARL1 when the optimal chart parameters that minimize the zero-state 
ARL1 is adopted on processes with a non-zero initial state. The probability for different 
initial states is also obtained. The effects on the ARL1 and the initial state probabilities are 
evaluated based on the conditional and cyclical assumptions.

The optimal chart parameters and ARL1 for n = 5 and { }1.10,1.25,1.50,2.00τ ∈  from 
Calzada and Scariano (2013) is shown in Table 1. Note that the optimal chart parameters 
from Calzada and Scariano (2013) is based on the zero-state ARL1.
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The ARL1 shown in Table 1 can only be obtained under a zero-state condition or if 
the initial state is 0. However, under the steady-state assumption, the initial state may not 
be zero, and the ARL1 shown in Table 1 may not be obtained. For example, the zero-state 
ARL1 for 0,1,...,i L=  is 115.39. However, the ARL1 might not be 115.39 if the initial state 
is not 0. Hence, this section will look at the actual ARL1 for different initial states. For an 
initial state i, 0,1,...,i L= , this is achieved by letting the ( )th1i +  element of the vector 
q  be 1, while letting the other elements of q  be zero. Table 2 shows the conditional and 
cyclical probabilities, as well as the ARL1 for different initial states, when the optimal 
chart parameters in Table 1 is adopted, where similar with Table 1, n = 5 and 0 0.05γ = . 
Due to space constraints and the consistency in the trends, only results for states 0,1, L-1 
and L are shown in Table 2.

The same optimal chart parameters in Table 1 are adopted in Table 2. This is to study 
the effects of adopting these chart parameters for cases where the initial state is not zero. 
For example, for 05, 0.05n γ= =  and 1.10τ = , this paper investigates the impact towards 
ARL1 when the optimal chart parameters ( )73, 0.01031, 0.09943L LCL UCL= = = , obtained 
to optimize the ARL1 based on a zero initial state, is implemented on processes with a 
non-zero initial state, i.e. any initial state from states 1 to 73. This will enable us to study 
the actual performance of the chart when the initial state is not zero, as shown in Table 2. 

Table 1	
Optimal chart parameters and ARL1 of the zero-state synthetic CV chart for n = 5, 0 0.05γ = and 

{ }1.10,1.25,1.50,2.00τ ∈

τ L LCL UCL ARL1

1.10 73 0.01031 0.09943 115.39
1.25 30 0.01142 0.09651 24.02
1.50 12 0.01277 0.09326 5.76
2.00 5 0.01426 0.08993 1.97

By moving vertically down the second last column of Table 2, the ARL1 increases 
gradually as the initial state becomes larger. The last column of Table 2 shows the 
percentage increase from the zero-state ARL1. The differences between the ARL1 for an 
initial state of zero and an initial state of L can be quite large, especially for small shift 
sizes of 1.10τ = . For example, when 1.10τ = , the ARL1 increases by 63.39% from 
115.39 when the initial state is zero to 188.53 when the initial state is 73. A similar trend 
is also shown for other values of τ . This shows that the actual performance will differ 
from that shown by the zero-state ARL1 when the state before the change point is not zero. 
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Steady-state Performance 

This section evaluates the conditional and cyclical steady-state ARL1s. The first design 
adopts chart parameters that are optimal for the zero-state ARL1, while the second design 
adopts chart parameters that are optimal for the steady-state ARL1. 

First Design. The optimal chart parameters based on the methodology by Calzada and 
Scariano (2013), which optimizes the zero-state ARL1, is adopted in this design. The value 

Table 2	
The conditional probability, cyclical probability and ARL1 for different initial states based on the optimal chart 
parameters for the zero-state synthetic CV chart

τ L LCL UCL Initial 
state

Conditional 
Probability

Cyclical 
Probability

ARL1 Percentage 
Increase 
from the 

Zero-state 
ARL1

1.10 73 0.01031 0.09943 0 0.00482 0.00685 115.39 0%

1 0.00480 0.00680 115.97 0.50%

72 0.00341 0.00418 186.96 62.02%

73 0.70264 0.60547 188.53 63.39%

1.25 30 0.01142 0.09651 0 0.00802 0.01019 24.02 0%

1 0.00796 0.01009 24.28 1.08%

29 0.00635 0.00757 41.95 74.65%

30 0.78532 0.73536 43.20 79.85%

1.50 12 0.01277 0.09326 0 0.01335 0.01565 5.76 0%

1 0.01317 0.01540 5.87 1.91%

11 0.01151 0.01316 9.96 72.92%

12 0.85107 0.82757 11.05 91.84%

2.00 5 0.01426 0.08993 0 0.02142 0.02381 1.97 0%

1 0.02096 0.02324 2.03 3.05%

4 0.01964 0.02162 2.87 45.69%

5 0.89740 0.88649 3.89 97.46%
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of p in Equation 3 and 4 is obtained so that the zero-state ARL0 = 370.4. Table 3 shows 
the zero-state, conditional and cyclical steady-state ARL1s based on these optimal chart 
parameters for { }0 0.05,0.10,0.20γ ∈ , { }5,10,15n∈ and { }1.10,1.25,1.50,2.00τ ∈ . In 
parenthesis beside the steady-state ARL1s are the percentage increase from the zero-state 
ARL1. The first three columns of Table 3 show the optimal ( ), ,L LCL UCL which minimizes 
the zero-state ARL1 in Equation 8, subject to the constraint ARL0 = 370.4. 

	
Table 3	
The conditional and cyclical steady state 1'ARL  when chart parameters which optimizes the zero-state 
ARL1 are adopted

0 0.05γ =

n = 5

τ L LCL UCL Zero-state
ARL1

Conditional 
Steady-state 

1ARL'

Cyclical Steady-
state

1ARL'
1.10 73 0.01031 0.09943 115.39 175.10 (51.75%) 170.37 (47.65%)
1.25 30 0.01142 0.09651 24.02 40.47 (68.48%) 39.81 (65.74%)
1.50 12 0.01277 0.09326 5.76 10.47 (81.77%) 10.37 (80.03%)
2.00 5 0.01426 0.08993 1.97 3.73 (89.34%) 3.71 (88.32%)

n = 10
1.10 57 0.02118 0.08237 78.87 122.40 (55.19%) 119.56 (51.59%)
1.25 17 0.02277 0.07975 11.48 20.03 (74.48%) 19.82 (72.65%)
1.50 6 0.02435 0.07727 2.71 5.05 (86.35%) 5.03 (85.61%)
2.00 3 0.02550 0.07552 1.22 2.35 (92.62%) 2.34 (91.80%)

n = 15
1.10 46 0.02651 0.07554 58.48 92.21 (57.68%) 90.36 (54.51%)
1.25 12 0.02814 0.07304 7.18 12.50 (74.09%) 12.39 (72.56%)
1.50 4 0.02965 0.07109 1.86 3.50 (88.17%) 3.49 (87.63%)
2.00 2 0.03070 0.06968 1.07 2.06 (92.52%) 2.05 (91.59%)

0 0.10γ =

n = 5
1.10 73 0.02057 0.20079 116.16 176.19 (51.68%) 171.44 (47.59%)
1.25 31 0.02271 0.19499 24.34 41.06 (68.69%) 40.37 (65.86%)
1.50 12 0.02549 0.18805 5.85 10.62 (81.54%) 10.53 (80.00%)
2.00 5 0.02846 0.18120 2.00 3.78 (89.00%) 3.76 (88.00%)
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Table 3 (Continued)

0 0.05γ =

τ L LCL UCL Zero-state 
ARL1

Conditional 
Steady-state 

1ARL'

Cyclical 
Steady-state 

1ARL'
n = 10

1.10 59 0.04217 0.16590 79.77 124.06 
(55.52%)

121.08 
(51.79%)

1.25 17 0.04544 0.16038 11.71 20.37 (73.95%) 20.15 
(72.08%)

1.50 6 0.04859 0.15533 2.76 5.15 (86.59%) 5.12 
(85.51%)

2.00 3 0.05090 0.15175 1.24 2.37 (91.13%) 2.37 
(91.13%)

n = 15
1.10 46 0.05291 0.15180 59.32 93.43 (57.50%) 91.57 

(54.37%)
1.25 12 0.05616 0.14702 7.33 13.04 (77.90%) 12.94 

(76.53%)
1.50 4 0.05919 0.14273 1.89 3.56 (88.36%) 3.54 

(87.30%)
2.00 2 0.06128 0.13985 1.07 2.07 (93.46%) 2.06 

(92.52%)

0 0.20γ =

n = 5
1.10 73 0.04080 0.41798 119.29 180.34 

(51.18%)
175.52 

(47.14%)
1.25 32 0.04488 0.40525 25.68 43.19 (68.19%) 42.45 

(65.30%)
1.50 12 0.05057 0.38902 6.25 11.28 (80.48%) 11.18 

(78.88%)
2.00 5 0.05647 0.37369 2.13 4.01 (88.26%) 3.99 

(87.32%)
n = 10

1.10 59 0.08355 0.34021 83.48 129.14 
(54.70%)

126.08 
(51.03%)

1.25 18 0.08976 0.32867 12.65 21.92 (73.28%) 21.68 
(71.38%)

1.50 6 0.09636 0.31705 2.98 5.52 (85.23%) 5.49 
(84.23%)

2.00 3 0.10096 0.30929 1.29 2.48 (92.25%) 2.47 
(91.47%)



Pertanika J. Sci. & Technol. 29 (3): 2149 - 2173 (2021)2162

Ming Hui Chew, Wai Chung Yeong, Muzalwana Abdul Talib, Sok Li Lim and Khai Wah Khaw

From Table 3, the conditional and cyclical ARL1 is larger than the zero-state ARL1, 
especially for small values of τ . For instance, when 0 0.05,  5nγ = =  and 1.10τ = , under 
a zero-state assumption, practitioners would assume that the ARL1 is 115.39. However, 
if these chart parameters are adopted for the steady-state condition, the ARL1 increases 
to 175.10 and 170.37, respectively under conditional and cyclical assumptions. For ease 
of reference, the steady-state ARL1s based on optimal chart parameters that minimize the 
zero-state ARL1 is referred to as 1ARL' . There is a large difference between the zero-state 
ARL1 and 1ARL' when τ  and n is small. As a result, under the steady-state condition, the 
zero-state ARL1 gives an incorrect evaluation of the actual performance and will likely 
lead to a lack of confidence towards the chart. 

There is a smaller difference between the zero-state ARL1 and 1ARL' for larger values of 
n and τ , although a higher percentage increase from the zero-state is shown. For example, 
when 0 0.05,  5nγ = = and 1.10τ = , the difference between the zero-state ARL1 with the 
conditional and cyclical 1ARL' s are 59.71 and 54.98, respectively, but when 0 0.05,  5nγ = =  
and , the corresponding difference reduces to 1.76 and 1.74, respectively, while when 

0 0.05,  15nγ = =  and 1.10τ = , the corresponding difference reduces to 33.73 and 31.88.   
There are minimal differences between the conditional and cyclical 1ARL' , with 

the conditional 1ARL'  being slightly larger than the cyclical 1ARL' . For example, when 
0 0.05,  5nγ = =  and 1.10τ = , the conditional and cyclical steady states 1ARL' s are 175.10 

and 170.37, respectively, with a difference of 2.70%. For larger values of τ , the differences 
are even smaller. For example, when 0 0.05,  5nγ = =  and 2.00τ = , the conditional and 
cyclical steady states 1ARL' is 3.73 and 3.71, respectively, with a minimal difference of 
0.54%.  

Second Design. Alternative optimal chart parameters (L, LCL, UCL) are proposed to 
minimize the conditional and cyclical steady-state ARL1s, unlike in first design where 

Table 3 (Continued)

0 0.05γ =

τ L LCL UCL Zero-state 
ARL1

Conditional 
Steady-state 

1ARL'   

Cyclical Steady-
state

1ARL'  
n = 15

1.10 49 0.10461 0.30989 62.78 98.81 (57.39%) 96.73 (54.08%)
1.25 13 0.11098 0.29973 7.97 14.15 (77.54%) 14.02 (75.91%)
1.50 5 0.11617 0.29178 2.02 3.82 (89.11%) 3.80 (88.12%)
2.00 2 0.12164 0.28368 1.10 2.12 (92.73%) 2.11 (91.82%)
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they are chosen to minimize the zero-state ARL1. The chart parameters can be obtained 
through the following steps.

1.	 Specify 0γ , n and τ .
2.	 Set L = 1.
3.	 Numerically solve 0ARL 370.4=  to obtain p. This is achieved by using numerical 

methods in the Scicoslab software to find the value of p to solve 
( )( )
1 370.4.

1 1 Lp p
=

− −

4.	 By substituting p in Step 3 into Equation 3 and 4, the LCL and UCL are obtained.
5.	 Calculate the conditional (cyclical) ARL1 from Equation 12 (Equation 13) with 

the current combination of (L, LCL, UCL). 
6.	 Increase L by 1.
7.	 Repeat Steps 3 to 6 until the conditional (cyclical) ARL1 for L+1 is larger than the 

conditional (cyclical) ARL1 for L. 
The (L, LCL, UCL) with the smallest conditional (cyclical) ARL1 are considered the 

optimal chart parameters. In Step 3, p is obtained by solving the zero-state ARL0, instead 
of solving the steady-state ARL0 with 0δ =  in Equation 12 or 13. This is to ensure that 
both the first and second designs have the same IC run length performance, so that a fair 
comparison can be made between these two designs. 

The optimal chart  parameters,  condit ional  and cyclical  ARL 1s when 
{ }0 0.05,0.10,0.20γ ∈ , { }5,10,15n∈ and { }1.10,1.25,1.50,2.00τ ∈ are shown in Table 4. 

In parenthesis beside the ARL1s are the percentage improvement compared to the 
first design in Table 3.

From Table 4, for smaller shift sizes, the conditional and cyclical ARL1 adopting 
the optimal chart parameters that minimize the steady-state ARL1 are smaller than the 
corresponding 1ARL'  that is based on the optimal parameters that minimize the zero-
state ARL1. For instance, when 0 0.05γ = , 5n =  and 1.10τ = , the conditional and 
cyclical 1ARL' are 175.10 and 170.37, respectively, when the parameters from Table 3 are 
adopted. However, when the optimal parameters that minimizes the steady-state ARL1 
are adopted, the conditional and cyclical ARL1 are 161.45 and 160.88, respectively. This 
shows a percentage improvement of 7.80% and 5.57%, respectively, when the correct 
optimal parameters are adopted. The reduction on ARL1 shows that less average number 
of samples are required to detect the OOC condition. This results in quicker corrective 
action taken to repair the process and reduces the number of defective products produced 
due to an OOC process. For large shift sizes, there are minimal or no difference between 
the ARL1 in Table 3 and 4.	
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Table 4	
The optimal chart parameters and ARL1 for the conditional and cyclical steady-state synthetic CV chart

0 0.05γ =

τ

Conditional Steady State Cyclical Steady State
n = 5

L LCL UCL ARL1 L LCL UCL ARL1

1.10 13 0.01264 0.09355 161.45 
(7.80%)

14 0.01253 0.09382 160.88 
(5.57%)

1.25 14 0.01253 0.09382 39.18 
(3.19%)

15 0.01242 0.09407 38.91 
(2.26%)

1.50 8 0.01343 0.09174 10.32 
(1.43%)

8 0.01343 0.09174 10.26 
(1.06%)

2.00 4 0.01467 0.08905 3.72 
(0.27%)

4 0.01467 0.08905 3.71 (0%)

τ n = 10

1.10 14 0.02305 0.07930 114.48 
(6.47%)

15 0.02295 0.07846 113.95 
(4.69%)

1.25 9 0.02371 0.07826 19.53 
(2.50%) 

9 0.02371 0.07826 19.42 
(2.02%)

1.50 4 0.02501 0.07626 5.02 
(0.59%)

5 0.02464 0.07682 5.01 
(0.40%)

2.00 3 0.02550 0.07552 2.35 (0%) 3 0.02550 0.07552 2.34 (0%)

τ n = 15

1.10 13 0.02804 0.07335 86.97 
(5.75%)

15 0.02785 0.07361 86.55 
(4.22%)

1.25 7 0.02886 0.07219 12.53 
(-0.24%)

7 0.02886 0.07219 12.47 
(-0.65%)

1.50 3 0.03008 0.07052 3.50 (0%) 3 0.03008 0.07052 3.40 
(2.58%)

2.00 2 0.03070 0.06968 2.06 (0%) 2 0.03070 0.06968 2.05 (0%)

0 0.10γ =

τ n = 5
1.10 13 0.02524 0.18865 162.36 

(7.85%)
14 0.02501 0.18921 161.78 

(5.63%)
1.25 14 0.02501 0.18921 39.66 

(3.53%)
15 0.02480 0.18973 39.38 

(2.45%)
1.50 8 0.02681 0.18493 10.48 

(1.32%)
8 0.02681 0.18493 10.42 

(1.04%)

2.00 4 0.02928 0.17940 3.77 
(0.26%)

4 0.02928 0.17940 3.76 (0%)
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0 0.05γ =

Conditional Steady State Cyclical Steady State

L LCL UCL ARL1 L LCL UCL ARL1

τ n = 10

1.10 14 0.04600 0.15947 115.66 
(7.26%)

15 0.04580 0.15980 115.12 
(4.92%)

1.25 9 0.04732 0.15734 19.88 
(2.41%)

10 0.04700 0.15785 19.78 
(1.84%)

1.50 4 0.04992 0.15326 5.12 
(0.58%)

5 0.04918 0.15440 5.09 
(0.59%)

2.00 3 0.05090 0.15175 2.37 (0%) 3 0.05090 0.15175 2.37 (0%)

n = 15

1.10 13 0.05596 0.14732 88.12 
(5.68%)

15 0.05559 0.14785 87.68 
(4.25%)

1.25 7 0.05761 0.14496 12.78 
(1.99%)

7 0.05761 0.14496 12.72 
(1.70%)

1.50 3 0.06004 0.14155 3.55 
(0.28%)

3 0.06004 0.14155 3.54 (0%)

2.00 2 0.06128 0.13985 2.07 (0%) 2 0.06128 0.13985 2.06 (0%)

0 0.20γ =

τ n = 5

1.10 13 0.05007 0.39038 166.11 
(7.89%)

13 0.05007 0.39038 165.54 
(5.69%)

1.25 14 0.04961 0.39164 41.67 
(3.65%)

15 0.04919 0.39280 41.38 
(2.52%)

1.50 8 0.05320 0.38201 11.15 
(1.15%)

8 0.05320 0.38201 11.08 
(0.89%)

2.00 4 0.05810 0.36966 4.01 (0%) 5 0.05647 0.37369 3.99 (0%)

τ n = 10

1.10 13 0.09163 0.32531 120.45 
(6.73%)

15 0.09080 0.32680 119.90 
(4.90%)

1.25 9 0.09383 0.32143 21.36 
(2.55%)

10 0.09319 0.32255 21.24 
(2.03%)

1.50 5 0.09754 0.31504 5.49 
(0.54%)

5 0.09754 0.31504 5.47 
(0.36%)

2.00 3 0.10097 0.30929 2.48 (0%) 3 0.10096 0.30929 2.47 (0%)

Table 4 (Continued)
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The difference between the conditional and cyclical ARL1 by adopting the optimal chart 
parameters that minimize the steady-state ARL1 are smaller compared to the one in Table 
3. For example, for 0 0.05γ = , 5n = and 1.10τ = , the conditional and cyclical ARL1 are 
161.45 and 160.88 in Table 4 (a difference of 0.35%), but for Table 3, they are 175.10 and 
170.37 (a difference of 2.70%). Similar with Knoth (2016), the optimal L in Table 4 is 
smaller than the optimal L in Table 3, especially for small shift sizes. For example, when 

0 0.05γ = , 5n =  and 1.10τ = , the optimal L in Table 4 is 13 and 14 under the conditional 
and cyclical assumptions, respectively, while the corresponding optimal L in Table 3 is 73. 
Meanwhile, a larger LCL and smaller UCL is observed in Table 4, compared with Table 3. 
For example, when 0 0.05γ = , 5n =  and 1.10τ = , the optimal (LCL, UCL) in Table 4 is 
(0.01264, 0.09355) and  (0.01253, 0.09832) under the conditional and cyclical assumptions, 
respectively, while the corresponding optimal (LCL, UCL) in Table 3 is (0.01031, 0.09943). 
Hence, the range of CV values for a sample to be identified as conforming has been 
reduced and will likely result in an increase in the occurrence of non-conforming samples. 
From Equation 5, a larger LCL and smaller UCL will decrease the probability for A, thus 
increasing the probability of non-conforming samples. For example, when 0 0.05γ = , 5n =
and 1.10τ = , the probability of a non-conforming sample is 0.02659 and 0.01784 for the 
conditional and cyclical assumptions in Table 4, respectively, while the corresponding 
probability of a non-conforming sample in Table 3 is 0.01367.   

Although the second design results in better steady-state performance than the first 
design for small shift sizes, the ARL1 is still quite large compared with the zero-state ARL1. 
As expected, the zero-state ARL1 does not give a true picture on the chart’s performance 
under the steady-state condition.

Performance Comparisons

The synthetic CV chart is compared with the run rules, EWMA and Shewhart CV charts 
in this section. Castagliola et al. (2013) and Castagliola et al. (2011) gave a thorough 
discussion on the run rules and EWMA CV charts, respectively. 

The zero-state ARL1 of these charts, for { }0 0.05,0.10,0.20γ ∈ , { }5,10,15n∈ and 
{ }1.1,1.2,1.5,2.0τ ∈ are shown in Table 5. In parenthesis are the percentage of improvement 

of the run rules, EWMA and Shewhart CV charts compared to the synthetic CV chart, 
where a negative percentage shows that the synthetic CV chart performs better. The 
optimal L in Table 3 is adopted for the synthetic CV chart. For instance, when n = 5 and 

0 0.05γ = , L = 73, 30, 12 and 5 for 1.10,1.25,1.50 and 2.00τ = , respectively. Besides 
that, it is assumed that the initial state for the synthetic CV chart is state 0 since that is 
the assumption for the zero-state design of the chart. 

From Table 5, the zero-state synthetic CV chart outperforms the Shewhart CV chart 
for all 0γ , n and τ . This is especially so for small n and τ , where the difference in ARL1 
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is quite large. The zero-state synthetic CV chart outperforms the zero-state run rules CV 
chart for most cases, except when 1.10τ = for n = 5, where the run rules chart slightly 
outperforms the synthetic chart. The zero-state EWMA chart outperforms the zero-state 
synthetic chart, except when shift sizes are large.

Although the synthetic CV chart seems to outperform the run rules CV chart in most 
cases, the comparison is based on a zero-state assumption. Note that the zero-state synthetic 
CV chart assumes that the initial state is zero. Although a zero initial state results in the 
best performance, the probability for a zero initial state is very small in a steady-state 
scenario. For example, from Table 2, when 0 0.05,γ = 5n =  and 1.10τ = , the conditional 
and cyclical probability of a zero initial state are 0.00482 and 0.00685, respectively. This 
shows that there is a less than 1% chance for the occurrence of the zero-initial state. Hence, 
in Table 6, the conditional and cyclical steady-state ARL1s for synthetic, run rules, EWMA 
and Shewhart CV charts are compared. In parenthesis are the percentage of improvement of 
the run rules, EWMA and Shewhart CV charts compared to the synthetic CV chart, where 
a negative percentage shows that the synthetic CV chart performs better.

By comparing Tables 5 and 6 for the run rules and EWMA charts, negligible differences 
are shown between the zero-state and steady-state ARL1s, since these two charts does not 
involve any head-start feature, while the zero-state and steady-state Shewhart CV charts are 
the same, as no assumptions are required for the initial state. Note that in Table 6, the same 
L as that in Table 4 is adopted for the synthetic chart. For example, for n = 5 and 0 0.05γ = , 
L = 13, 14, 8, and 4 for 1.10,1.25,1.50 and 2.00,τ = respectively for the conditional steady-
state, while L = 14, 15, 8 and 4 for 1.10,1.25,1.50 and 2.00τ = , respectively during cyclical 
steady-states. 

From Table 6, the run rules CV chart outperforms the synthetic CV chart for all n, 0γ
and τ , especially for small n and τ . However, for large n and τ , the synthetic and run 
rules CV charts shows comparable steady-state performance, with the run rules CV chart 
showing slightly better performance. Hence, the synthetic CV chart outperforms the run 
rules CV chart only for a zero-state assumption and not under the steady-state scenario. In 
fact, for numerous cases, the synthetic CV chart is not even better than the basic Shewhart 
CV chart. Since it is more difficult to implement the synthetic CV chart, practitioners would 
rather implement the Shewhart CV chart. Furthermore, the steady-state EWMA CV chart 
outperforms the steady-state synthetic CV chart for all n, 0γ  and τ . Hence, the synthetic 
CV chart does not show good performance under the steady-state scenario.
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Table 6 (Continued)

τ
 γ0 = 0.20

Synthetic Run Rules EWMA Shewhart

Cond Cyc Cond Cyc Cond Cyc

1.10 166.11 165.54 110.83
(33.28%)

110.83
(33.05%)

53.60
(67.73%)

52.50
(68.29%)

163.95
(1.30%)

1.25 41.67 41.38 30.45
(26.93%)

30.45
(26.41%)

15.20
(63.52%)

15.12
(63.46%)

44.98
(-7.94%)

1.50 11.15 11.08 9.18
(17.67%)

9.18
(17.15%)

5.77
(48.25%)

5.79
(47.74%)

11.09
(0.54%)

2.00 4.01 3.99 3.61
(9.98%)

3.61
(9.52%)

2.49
(37.91%)

2.49
(37.59%)

3.05
(23.94%)

n = 10

τ
 γ0 = 0.20

Synthetic Run Rules EWMA Shewhart

Cond Cyc Cond Cyc Cond Cyc

1.10 120.45 119.90 89.02
(26.09%)

89.03
(25.75%)

31.86
(73.55%)

31.89
(73.40%)

125.69
(-4.35%)

1.25 21.36 21.24 17.80
(16.67%)

17.80
(16.20%)

8.61
(59.69%)

8.56
(59.70%)

24.11
(-12.87%)

1.50 5.49 5.47 4.93
(10.20%)

4.93
(9.87%)

3.29
(40.07%)

3.29
(39.85%)

5.09
(7.29%)

2.00 2.48 2.47 2.38
(4.03%)

2.38
(3.64%)

1.51
(39.11%)

1.51
(38.87%)

1.60
(35.48%)

n = 15

τ
 γ0 = 0.20

Synthetic Run Rules EWMA Shewhart

Cond Cyc Cond Cyc Cond Cyc

1.10 92.74 92.30 72.97
(21.32%)

72.97
(20.94%)

23.60
(74.55%)

23.62
(74.41%)

101.34
(-9.27%)

1.25 13.81 13.75 12.10
(12.38%)

12.10
(12.00%)

6.27
(54.60%)

6.23
(54.69%)

15.71
(-13.76%)

1.50 3.79 3.78 3.52
(7.12%)

3.52
(6.88%)

2.42
(36.15%)

2.42
(35.98%)

3.22
(15.04%)

2.00 2.12 2.11 2.08
(1.89%)

2.08
(1.42%)

1.21
(42.92%)

1.21
(42.65%)

1.23
(41.98%)
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CONCLUSIONS

This paper studies the performance of the synthetic CV chart under the more realistic steady-
state condition, where the assignable cause which results in an OOC condition happens 
after the process has been operating for some time. Under the steady-state condition, the 
advantage of the head-start feature has faded away. This paper contributes to the literature 
by highlighting large differences between the steady-state and zero-state performances, 
especially for small shift sizes and sample sizes. Hence, the zero-state performance is not 
an accurate representation for the synthetic CV chart’s performance. Practitioners should 
be cautious in evaluating the performance of the synthetic CV chart based on its zero-state 
performance. 

This paper also proposes an alternative design for the synthetic CV chart based on 
its steady-state performance. The alternative design results in an improvement in the 
steady-state performance of the synthetic CV chart. The proposed design is useful for 
practitioners who intend to adopt the synthetic CV chart to monitor a steady-state process, 
which is more realistic in most practical applications since processes are usually stable 
in the beginning. The synthetic CV chart does not show better steady-state performance 
compared to the run rules and Shewhart CV charts for small sample sizes and shift sizes, 
while comparable performance is shown for large sample sizes and shift sizes. Among 
the charts under comparison, the EWMA CV chart has the best steady-state performance.
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